Team members

MARTINEZ
Laurent
(DR2)

MARTINEZ Laurent (DR2)

laurent.martinez@inserm.fr

05 31 22 41 47

LAFFARGUE
Muriel
(DR2)

LAFFARGUE Muriel (DR2)

muriel.laffargue@inserm.fr

GAYRAL
Stephanie
(CR1)

GAYRAL Stephanie (CR1)

stephanie.gayral@iserm.fr

NAJIB
Souad
(CR1)

NAJIB Souad (CR1)

RAMEL
Damien
(CR2)

RAMEL Damien (CR2)

PERRET
Bertrand
(PU-PH)

PERRET Bertrand (PU-PH)

GENOUX
Annelise
(MCU/PH)

GENOUX Annelise (MCU/PH)

annelise.genoux@inserm.fr

05 31 22 40 82

CABOU
Cendrine
(MCU)

CABOU Cendrine (MCU)

VERDIER
Celine
(PH)

VERDIER Celine (PH)

DUPARC
Thibaut
(Post-doc)

DUPARC Thibaut (Post-doc)

FOUGERAT
Anne
(Post-doc)

FOUGERAT Anne (Post-doc)

SOLINHAC
Romain
(Post doc)

SOLINHAC Romain (Post doc)

mouin.nasr@inserm.fr

RAGAB
Ashraf
(IE)

RAGAB Ashraf (IE)

COMBES
Guillaume
(AI)

COMBES Guillaume (AI)

michel.nauze@inserm.fr

MALET
Nicole
(TR)

MALET Nicole (TR)

nicole.malet@inserm.fr

ANESIA
Rodica
(AI)

ANESIA Rodica (AI)

05 31 22 41 44

FRIED
Steven
(Doctorant)

FRIED Steven (Doctorant)

steven.fried@inserm.fr

05 31 22 40 82

NASR
Mouin
(Doctorant)

NASR Mouin (Doctorant)

High Density Lipoprotein (HDL) et phosphoinositide 3-kinase (PI3K) signaling in atherosclerosis.

 Atherosclerosis is initiated by endothelial dysfunction which leads to lipids accumulation, mainly cholesterol, within the vascular wall, associated to impaired excess cholesterol removal by High Density Lipoprotein (HDL). Latter on, cholesterol and lipid deposits induce an inflammatory and fibro-proliferative response, leading to the formation of an atherosclerotic plaque. When the plate breaks, it forms a thrombus responsible for myocardial infarction, stroke or acute lower limb ischemia, depending on its location. The standard treatment is to perform angioplasty with placement of arterial stent, which restores arterial flow but might have adverse effects, such as restenosis and thrombotic complications.

Our work is focused on two research axes, with the common goal to identify therapeutic targets for the prevention and treatment of atherosclerosis and its complications.

Axis 1: Regulation of F1-ATPase / P2Y axis in cardiovascular diseases: from cellular mechanisms to pre-clinical studies and clinical investigation.

Despite considerable progresses in prevention and therapy, atherosclerotic cardiovascular diseases remain the most frequent cause of death (> 50% in Europe). Current preventive and therapeutic measures, notably lowering of low-density lipoprotein (LDL) cholesterol and blood pressure can probably save 30%. For the remaining 70% there will only be hope if new targets for therapeutic intervention are identified. In this context, high-density lipoprotein (HDL) cholesterol, for which atheroprotective properties have been supported by epidemiological, clinical and basic research, is one of the more interesting targets for treatments that will further reduce cardiovascular morbidity and mortality.

Most of the atheroprotective effect of HDL is ascribed to its role in reverse cholesterol transport, a process whereby HDL removes cholesterol from atherosclerotic foam cells and delivers it to the liver for biliary excretion. In addition, HDL exerts various direct anti-inflammatory, anti-thrombotic, anti-oxidant and cytoprotective effects on the vasculature.

However, HDL is not easy to target, mainly because its atheroprotective functions are determined by the quality of HDL particles rather than the quantity of HDL-cholesterol. Therefore, HDL therapies that lower cardiovascular risk are NOT yet available.

Hence, major public health and economic and societal interest exists for

i. The better characterization of cellular and molecular partners involved in HDL functions for the development of new drugs able to affect specific mechanisms rather than increasing HDL-C levels.

ii. To identify HDL-related biomarkers better than HDL-cholesterol level for assessing cardiovascular risk (diagnostic and prognostic).

In this context, our team has previously demonstrated diverse roles of the cell surface F1-ATPase as a receptor for apoA-I (the main HDL apolipoprotein) coupled to purinergic P2Y receptors and involved in metabolic and vascular functions of HDL. The clinical relevance of this F1-ATPase/P2Ys axis in HDL functions in humans has recently been supported by the identification of serum F1-ATPase inhibitor (IF1) as an independent determinant of HDL-C and coronary artery disease risk.

Hence our research aims to study F1-ATPase / P2Ys pathway(s) from the molecular level to an integrated approach to pre-clinical models and to clinical investigation (WP3). Specifically, we want to:

1. Resolve the pathways and regulators which direct ecto-F1-ATPase to its atypical location in the plasma membrane as well as the signaling cascades elicited by the interaction of apoA-I (main HDL protein) with the ecto-F1-ATPase/P2Y partners.

2. Unravel the pathophysiological relevance of the ecto-F1-ATPase/P2Y axis to the HDL atheroprotective functions in reverse cholesterol transport and endothelial protection. This will be performed by using novel tools developed within the consortium such as pre-clinical animal models and new pharmacological molecules targeting ecto-F1-ATPAse activity.

3. Explore the potential of new HDL-related biomarkers, including IF1, as a diagnostic and prognostic biomarker for cardiovascular disease.

Thus, this research axis has the potential to co-develop new drugs as a therapy for cardiovascular disease and a companion diagnostic test. It will thus permit a biologically and clinical based reassessment of the optimal therapeutic strategy for targeting HDL, with the ultimate goal of proposing a theranostic approach in the diagnosis/prognosis, prevention and treatment of cardiovascular diseases.

Axis 2: To determine the molecular and cellular mechanisms involved in the response to arterial aggression, especially to study the role of the phosphoinositide 3-kinases in order to propose to new therapeutic approaches to prevent arterial damages.